
Introduction

Thyroid hormone was recently shown to precondition the myo−
cardium against ischemia reperfusion [1, 2]. In fact, long−term
thyroxin administration increases tolerance of the isolated rat
hearts to ischemia reperfusion injury [3,4] through mechanisms
similar to ischemic preconditioning [2]. However, whether this
response is mediated by the accompanied neurohormonal
changes or it is a direct effect of thyroid hormone has not been
elucidated.

Activation of the renin−angiotensin system (RAS) occurs in hy−
perthyroidism, but its physiological role remains largely un−

known. Hyperthyroidism is accompanied by increased expres−
sion and activity of renin and increased levels of angiotensin−
converting enzyme (ACE) and angiotensin II in plasma [5 ± 7].
This is thought to be a compensatory mechanism to the de−
creased systemic vascular resistance that occurs in this condition
[8]. However, thyroid hormone has been shown to activate RAS
directly in cell culture [9], while cardiac RAS is upregulated in
the hyperthyroid myocardium. Kobori et al. demonstrated that
cardiac levels of renin, renin mRNA and angiotensin II are in−
creased in thyroxin−treated rats, and these changes were shown
to be independent of the sympathetic nervous system or circu−
lating RAS, and to contribute to the development of cardiac hy−
pertrophy [10].
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Abstract

Growth and stress seem to share common intracellular pathways
and activation of growth signaling can increase resistance to
stress. Thyroid hormone induces cardiac hypertrophy and pre−
conditions the myocardium against ischemia reperfusion injury.
The present study investigated whether this response is medi−
ated by renin−angiotensin system (RAS). RAS is shown to be
activated in hyperthyroidism and is involved in the development
of cardiac hypertrophy. Male Wistar rats were treated with L−
thyroxin (25 mg/100 g, sc, od) for fourteen days, while normal
rats served as controls. In addition, irbesartan (150 mg/kg po), a
potent blocker of angiotensin II type 1 receptor (AT1), was given
with L−thyroxin for fourteen days. Isolated hearts were perfused
in Langendorff mode; after stabilization, they were subjected to

20 min zero−flow global ischemia and 45 min of reperfusion.
Thyroxin induced cardiac hypertrophy, which was diminished
with irbesartan administration. Post−ischemic recovery of func−
tion was increased in thyroxin−treated hearts as compared to
controls while ischemic contracture was accelerated and intensi−
fied. Irbesartan did not abolish this response. In conclusion,
blockade of angiotensin II type 1 receptor with irbesartan pre−
serves thyroxin−induced cardioprotection while diminishing car−
diac hypertrophy. It is likely that thyroxin−induced cardioprotec−
tion is due to a direct effect of thyroid hormone.
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Angiotensin II is also likely to serve several other functions. Re−
cent studies demonstrate that angiotensin II can precondition
the heart, whilst activation of AT1 receptor by angiotensin II, pro−
duced locally in the myocardium, contribute to the limitation of
infarct size mediated by preconditioning. Furthermore, selective
blockade of AT1 receptors abolishes the preconditioning effect in
the isolated rabbit heart [11 ± 14].

Thus, apart from being involved in cardiac hypertrophy, the in−
creased activation of renin−angiotensin system (RAS) observed,
is also likely to contribute to thyroid hormone−induced cardio−
protection. Growth and stress share common intracellular sig−
naling, while stimulation of growth signaling increases resist−
ance to stress [15]. This issue, although of therapeutic impor−
tance, has not been previously addressed. Therefore, the present
study investigated the role of RAS in thyroxin−induced cardio−
protection using irbesartan, a potent inhibitor of angiotensin II
AT1 receptor.

Materials and Methods

Animals
Thirty−six Wistar male rats weighing 300 ± 350 g were used for
this study. The rats were handled in accordance with the Guide
for the Care and Use of Laboratory Animals published by the US
National Institutes of Health (NIH Publication No 85 ±23, revised
in 1996).

Induction of hyperthyroidism
Hyperthyroidism was induced in rats by thyroxin administra−
tion. L−thyroxin (Sigma Chemicals, St Louis MO, USA) was diluted
in normal saline as previously described and given subcuta−
neously once daily (250 mg/kg) for 14 days [16]. Control rats
were treated with normal saline subcutaneously once daily for
14 days.

Irbesartan administration
Irbesartan (Sanofi−Synthelabo, Montpellier, France), was admin−
istered at the dose of 150 mg/kg/day. The drug was diluted in me−
thylcellulose 0.6% and given orally once daily for 14 days. Control
rats were given methylcellulose 0.6 % orally once daily for 14
days.

Experimental groups
Three groups were included in this study:
a) Rats treated with normal saline and methylcellulose; NORM,

n = 11
b) Rats treated with thyroxin and methylcellulose; THYR, n = 13
c) Rats treated with thyroxin and irbesartan, THYR−IRB, n = 12

Experimental procedure
a) Five rats from each group were used for the assessment of car−

diac hypertrophy and measurement of glycogen levels. Rats
were anesthetized by intraperitoneal injection of ketamine
hydrochloric acid (150 mg/kg), and heparin (1,000 IU/kg) was
given intravenously before thoracotomy. The hearts were rap−
idly excised and placed in ice−cold Krebs−Henseleit buffer. The
left ventricles were weighed, rapidly placed in liquid nitrogen

and then stored at ± 70 8C, in order to be used for glycogen
determination.

b) Rats from each group were used for the assessment of base−
line cardiac performance and response to ischemia reperfu−
sion. After anesthesia and heparin administration, the hearts
were rapidly excised and mounted on a Langendorff appara−
tus as previously described [16]. In this non−ejecting isolated
heart preparation, the hearts were perfused in a retrograde
fashion at constant flow adjusted to the left ventricular
weight, so coronary flow per gram of cardiac tissue was sim−
ilar in all the experimental groups. The hearts were perfused
with oxygenated (95 % O2, 5 % CO2) Krebs−Henseleit buffer at a
temperature of 37 8C and were paced at 320 beats/min. A wa−
ter−filled balloon was inserted in the left ventricular cavity
and measured the left ventricular pressure under isovolumic
conditions. After 20 min of stabilization, the hearts were sub−
jected to 20 min of zero−flow global ischemia and 45 min of
reperfusion. The pacemaker was turned off during the period
of ischemia.

Assessment of cardiac hypertrophy
Cardiac hypertrophy was assessed by the measurement of left
ventricular weight (LVW in mg) and the ratio of LVW to body
weight in g (LVW/BW in mg/g).

Measurement of myocardial glycogen
Glycogen content was measured by enzymatic analysis [17]. Left
ventricular tissue was homogenized in 40 mM potassium acetate
(pH 4.8). Homogenates were centrifuged at 12,000 � g for 10 min
at 4 8C, and the supernatant was incubated with amyloglycosi−
dase (Sigma−Aldrich) for 2 h at 37 8C. Glucose liberated from gly−
cogen was measured spectrophotometrically at 563 nm using
the Amplex red glucose assay kit (Molecular Probes Europe, Lei−
den, The Netherlands). Tissue glycogen content was calculated
by subtraction of the measured glucose from the total glucose
after glycogen hydrolysis with amyloglycosidase. Glycogen con−
tents were expressed in mmol of glucose per gram of left ventric−
ular weight.

Assessment of baseline and post−ischemic cardiac function
The baseline cardiac function was assessed by measurement of
left ventricular developed pressure (LVDP in mmHg) and the pos−
itive and negative first derivative of LVDP (+dP/dt and ± dP/dt in
mmHg/sec) at the end of the stabilization period. During ische−
mia, minimal ventricular pressure increases, a phenomenon
known as ischemic contracture. The severity of ischemic con−
tracture was assessed by the time to peak contracture (Tmax in
min) and the magnitude of contracture (Cmax in mmHg). Post−is−
chemic function was assessed by the recovery of the left ventric−
ular developed pressure, which was measured at the end of the
reperfusion period and was expressed as percentage of the initial
value (LVDP %). Left ventricular end−diastolic pressure was meas−
ured at 45 min of reperfusion (LVEDP45 in mmHg).

Statistics
Values are presented as mean (standard error of the mean, SEM).
The unpaired t−test and Mann−Whitney U−test were used for dif−
ferences between groups; p−values less than 0.05 after a two−
tailed test were considered significant.
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Results

Cardiac hypertrophy
Thyroxin administration resulted in the development of cardiac
hypertrophy. Irbesartan administration diminished, but did not
abolish, thyroxin−induced cardiac hypertrophy (Table 1).

Ischemic contracture profile
Ischemic contracture profile for all experimental groups is
shown in Fig.1a. Ischemic contracture was found to be acceler−
ated and exacerbated in thyroxin−treated rats, in comparison to
normal rats (Tmax was 13.5 (0.83) min in THYR, while peak con−
tracture was not achieved during 20 min of ischemia in NORM;
Cmax was 88.75 (7.1) mmHg in THYR and 53.17 (8.74) in NORM,
p < 0.05). The intensification of ischemic contracture was not
changed by administration of irbesartan (in THYR−IRB, Tmax was
12.07 (1.09) min and Cmax was 98.71 (9.18) mmHg, p < 0.05 vs.
NORM).

Myocardial glycogen levels
Myocardial glycogen levels were found to be decreased in thyr−
oxin−treated as compared to normal rats (10.1 (1.1) for NORM vs.
1.7 (0.4) for THYR, p < 0.05). Administration of irbesartan in thy−
roxin−treated hearts had no effect on myocardial glycogen levels
(2.6 (1.4) for THYR−IRB, p < 0.05 vs. NORM); Fig.1 b.

Cardiac function and functional response to ischemia
reperfusion
Increased contractile performance was found in hyperthyroid
hearts and this was not altered with irbesartan administration
(Table 1).

Post−ischemic functional recovery was higher in thyroxin−treat−
ed rats as compared to normal rats (40.16 (5.5) for NORM vs.
57.64 (4.5) for THYR, p < 0.05). Administration of irbesartan did
not abolish the increased post−ischemic recovery of function in−
duced by thyroxin administration (58.3 (4.9) for THYR−IRB,
p < 0.05 vs. NORM); Fig. 2 a.

Left ventricular end−diastolic pressure at 45 min of reperfusion
was no different between the experimental groups ± LVEDP45

was 65.3 (6.5) for NORM, 61.5 (3.9) for THYR and 58.3 (6.6) for
THYR−IRB, p > 0.05.

Discussion

Activation of renin−angiotensin system is now recognized to ex−
ert several actions on the cardiovascular system [18]. It is in−
volved in the development of cardiac hypertrophy and even in
the response of the heart to ischemia [19]. Growth and stress
seem to share common pathways [15]. Circulating and tissue
RAS is activated in hyperthyroid states, but its physiological role
is not fully understood. Recent evidence shows that the renin−
angiotensin system, and particularly tissue RAS, is involved in
the development of thyroid hormone−related cardiac hypertro−
phy; blockade of AT1 angiotensin receptor by losartan resulted
in reduction of the thyroxin−induced cardiac hypertrophy
[5,10, 20, 21]. This effect was independent from sympathetic acti−
vation; hyperthyroidism−induced cardiac hypertrophy was re−

duced by losartan even in hyperthyroid rats subjected to sympa−
thetic denervation [10]. Furthermore, ACE inhibitors such as cap−
topril with dominant action on the circulating RAS did not pre−
vent the development of cardiac hypertrophy [20]. Accordingly,
in the present study, administration of irbesartan, an AT1 angio−
tensin receptor antagonist, produced similar results; thyroxin−
induced cardiac hypertrophy was significantly decreased in irbe−
sartan treated animals.

Fig. 1 a Left ventricular pressure in normal hearts (NORM), hyperthy−
roid hearts (THYR) and hyperthyroid hearts treated with irbesartan
(THYR−IRB) during zero−flow global ischemia. Ischemic contracture is
accelerated and potentiated in THYR and THYR−IRB hearts. (bar = sem.)
b Myocardial glycogen levels in normal rats (NORM), hyperthyroid rats
(THYR) and hyperthyroid rats treated with irbesartan (THYR−IRB).
(bar = sem); *p < 0.05 vs. NORM.

Table 1 Cardiac Hypertrophy and Baseline Parameters of Cardiac
Function

NORM THYR THYR−IRB

LVW 624 (22.5) 780.75 (35.7) * 664.2 (14.2) ²

LVW/BW 1.74 (0.04) 2.36 (0.07) * 2.04 (0.09) * ²

LVDP 122.17 (3.1) 133.38 (4.7) 132 (5.9)

+dP/dt 4473 (434) 5878 (369) * 5928 (250) *

−dP/dt 2475 (148) 2792 (115) 2872 (171)

Left ventricular weight (LVW) inmg, ratio of LVW/body weight (BW) in mg/g,
left ventricular developed pressure (LVDP in mmHg), positive and negative
first derivative of LVDP (+ dP/dt and ± dP/dt in mmHg/sec) at the end of the
stabilization period in normal rats (NORM), hyperthyroid rats (THYR) and
hyperthyroid rats treated with irbesartan (THYR−IRB). *p < 0.05 vs. NORM.
² p < 0.05 vs. THYR.
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Several studies have shown that the renin−angiotensin system is
also involved in the response of the myocardium to ischemia
[19]. Angiotensin II can precondition the heart, while activation
of AT1 receptor by angiotensin produced locally in the heart con−
tributes to the limitation of infarct size by preconditioning. Fur−
thermore, selective blockade of AT1 angiotensin receptor abol−
ishes the preconditioning effect. Thyroid hormone−induced car−
dioprotection has been shown to be very similar to that of pre−
conditioning; both exacerbate ischemic contracture and increase
post−ischemic recovery of function in an isolated model of zero−
flow global ischemia and reperfusion [2,21, 23]. Furthermore, in−
creased activity of the RAS has also been shown to occur in hy−
perthyroid hearts. It is therefore possible that thyroxin−induced
cardioprotection involves the activation of RAS.

In the present study, inhibition of AT1 by irbesartan did not abol−
ish the protection induced by thyroxin. In fact, post−ischemic re−
covery of function was increased after chronic treatment with
thyroxin regardless the administration of irbesartan. Further−
more, the acceleration and intensification of ischemic contrac−
ture observed in those hearts was not abolished with the admin−
istration of irbesartan. Exacerbation of ischemic contracture is a
consistent finding that characterizes the hyperthyroid heart [1].
This ischemia−induced diastolic dysfunction could be related to
the cardiac hypertrophy. However, reduction of thyroxin−in−
duced cardiac hypertrophy by b−adrenergic blockade [24] or, in

the present study, by AT1 receptor blockade does not abolish
this response.

Studies on ischemic preconditioning show that exacerbation of
contracture that occurs in preconditioned hearts during ische−
mia is due to less energy availability as a consequence of the
myocardial glycogen depletion following the preconditioning
protocol [23]. Similarly, in our study, myocardial glycogen was
shown to be lower in thyroxin−treated hearts with subsequent
exacerbation of ischemic contracture. This response was not
found to be altered with irbesartan administration.

It appears that thyroid hormone preconditions the heart inde−
pendently from RAS or b−adrenergic system [24]. This might be
of important therapeutic relevance [25]. It is now recognized
that thyroid analogs might prove to be suitable therapeutic op−
tions for treating ischemic heart disease [26].

In conclusion, blockade of angiotensin II type 1 receptor with ir−
besartan preserves thyroxin−induced cardioprotection while di−
minishing cardiac hypertrophy. Thyroxin−induced cardioprotec−
tion is probably due to the direct effect of thyroid hormone.
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